Maximal rank for planar singularities of multiplicity 2

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 5 Maximal rank for planar singularities of multiplicity 2 Joaquim Roé

We prove that general unions of singularity schemes of multiplicity two in the projective plane have maximal rank.

متن کامل

vertex centered crossing number for maximal planar graph

the crossing number of a graph  is the minimum number of edge crossings over all possible drawings of  in a plane. the crossing number is an important measure of the non-planarity of a graph, with applications in discrete and computational geometry and vlsi circuit design. in this paper we introduce vertex centered crossing number and study the same for maximal planar graph.

متن کامل

The Multiplicity Polar Theorem and Isolated Singularities

Recently there has been much work done in the study of isolated singularities. The singularities may be those of sets, functions, vector fields or differential forms. Examples can be found in the references at the end of this paper. In these works the authors have developed algebraic invariants which describe the isolated singularity. In this paper, we show how many of these invariants can be c...

متن کامل

GEOMETRIC CONFIGURATIONS OF SINGULARITIES FOR QUADRATIC DIFFERENTIAL SYSTEMS WITH TOTAL FINITE MULTIPLICITY mf = 2

In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [3]. This relation is deeper than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci of diffe...

متن کامل

p-GROUPS WITH MAXIMAL ELEMENTARY ABELIAN SUBGROUPS OF RANK 2

Let p be an odd prime number and G a finite p-group. We prove that if the rank of G is greater than p, then G has no maximal elementary abelian subgroup of rank 2. It follows that if G has rank greater than p, then the poset E(G) of elementary abelian subgroups of G of rank at least 2 is connected and the torsion-free rank of the group of endotrivial kG-modules is one, for any field k of charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2006

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2005.12.014